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Abstract
Transfer learning has shown great potential to ac-
celerate Reinforcement Learning (RL) by leverag-
ing prior knowledge from past learned policies of
relevant tasks. Existing approaches either transfer
previous knowledge by explicitly computing simi-
larities between tasks or select appropriate source
policies to provide guided explorations. However,
how to directly optimize the target policy by al-
ternatively utilizing knowledge from appropriate
source policies without explicitly measuring the
similarities is currently missing. In this paper, we
propose a novel Policy Transfer Framework (PTF)
by taking advantage of this idea. PTF learns when
and which source policy is the best to reuse for the
target policy and when to terminate it by modeling
multi-policy transfer as an option learning problem.
PTF can be easily combined with existing DRL
methods and experimental results show it signifi-
cantly accelerates RL and surpasses state-of-the-art
policy transfer methods in terms of learning effi-
ciency and final performance in both discrete and
continuous action spaces.

1 Introduction
Recent advance in Deep Reinforcement Learning (DRL) has
obtained expressive success of achieving human-level control
in complex tasks [Mnih et al., 2015; Lillicrap et al., 2016].
However, DRL is still faced with sample inefficiency prob-
lems especially when the state-action space becomes large,
which makes it difficult to learn from scratch. Transfer
learning has shown great potential to accelerate Reinforce-
ment Learning (RL) [Sutton and Barto, 1998] via leverag-
ing prior knowledge from past learned policies of relevant
tasks [Laroche and Barlier, 2017; Rajendran et al., 2017].
∗Corresponding author.

One major direction of transfer in RL focused on measuring
the similarity between two tasks either through mapping the
state spaces between two tasks [Brys et al., 2015], or comput-
ing the similarity of two Markov Decision Processes (MDPs)
[Song et al., 2016], and then transferring value functions di-
rectly according to their similarities.

Another direction of policy transfer focuses on selecting a
suitable source policy for explorations using a probabilistic
exploration strategy [Fernández and Veloso, 2006] or multi-
armed bandit methods [Li and Zhang, 2018]. However, such
single-policy transfer cannot be applied to cases when one
source policy is only partially useful for learning the target
task. Although some transfer approaches utilized multiple
source policies during the target task learning, they suffer
from either of the following limitations, e.g., Brunskill and
Li [2014] restricted source policies to be learned in a Proba-
bly Approximately Correct (PAC)-learning way; Mann et al.
[2014] required a model of the environment to learn which
is infeasible for large-scale problems; Laroche and Barlier
[2017] assumed that all tasks share the same transition dy-
namics and differ only in the reward function. Recently,
Li et al. [2019] relaxed the above drawbacks by proposing
Context-Aware Policy reuSe (CAPS) for multi-policy transfer
by involving the option framework to select source policies
for explorations. However, CAPS is prone to the imperfec-
tion of source policies since it learns an intra-option policy
over these source policies. Furthermore, it requires manually
adding primitive policies to the policy library which limits its
generality and cannot be applied to problems with continuous
action spaces.

To address the above problems, we propose a novel Policy
Transfer Framework (PTF) which combines the above two
directions of policy reuse. Instead of using source policies
as guided explorations in a target task, we adaptively select
a suitable source policy during target task learning and use it
as a complementary optimization objective of the target pol-
icy. The backbone of PTF can still use existing DRL algo-
rithms to update its policy, and the source policy selection
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problem is modeled as the option learning problem. In this
way, PTF does not require any source policy to be perfect on
any subtask and can still learn toward an optimal policy in
case none of the source policy is useful. Besides, the option
framework allows us to use the termination probability as a
performance indicator to determine whether a source policy
reuse should be terminated to avoid negative transfer. In sum-
mary, the main contributions of our work are: 1) PTF learns
when and which source policy is the best to reuse for the tar-
get policy and when to terminate it by modeling multi-policy
transfer as the option learning problem; 2) we propose an
adaptive and heuristic mechanism to ensure the efficient reuse
of source policies and avoid negative transfer; and 3) both
existing value-based and policy-based DRL approaches can
be incorporated and experimental results show PTF signifi-
cantly boosts the performance of existing DRL approaches,
and outperforms state-of-the-art policy transfer methods both
in discrete and continuous action spaces.

2 Background
Formally, an RL task can be specified by a Markov Decision
Process (MDP), which is a tuple < S,A, T,R >, where S
is the state set; A is the action set; T is the state transition
function: S × A × S → [0, 1] and R is the reward function:
S × A × S → R. A policy π is a probability distribution
over actions conditioned on states: S ×A→ [0, 1]. The goal
is to find an optimal policy π∗ maximizing the total expected
return with a discount factor γ: U =

∑T
i=t γ

i−tri.
Policy Gradient (PG) algorithms are another choice for

dealing with RL tasks, which is to directly optimize the pol-
icy π parameterized by θ. PG methods optimize the objective
J(θ) = Es∼Pπ,a∼πθ

[U ] by taking steps in the direction of
∇θJ(θ). Using Q-function, then the gradient of the policy
can be written as:

∇θJ(θ) = Es∼Pπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)], (1)

where Pπ is the state distribution given π. Several practi-
cal PG algorithms differ in how they estimate Qπ . Several
practical PG algorithms differ in how they estimate Qπ . One
major category is to learn an approximation of the action-
value function Qπ(s, a); Qπ(s, a) is called the critic and
leads to a variety of actor-critic algorithms [Mnih et al., 2016;
Schulman et al., 2017].

The option framework [Sutton et al., 1999] formalized the
idea of temporally extended actions as an option. An option
o ∈ O is defined as a triple {Io, πo, βo} in which Io ∈ S
is an initiation state set, πo is an intra-option policy and
βo : Io → [0, 1] is a termination function that specifies the
probability an option o terminates at state s ∈ Io. An MDP
endowed with a set of options becomes a Semi-Markov De-
cision Process (Semi-MDP), which has a corresponding op-
timal option-value function over options learned using intra-
option learning. The option framework considers the call-
and-return option execution model, in which an agent picks
option o according to its option-value function Q(s, o), and
follows the intra-option policy πo until termination, then se-
lects a next option and repeats the procedure.
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Figure 1: An illustration of the policy transfer framework.

3 Policy Transfer Framework (PTF)
3.1 Motivation
One major direction of previous works focuses on trans-
ferring value functions directly according to the similarity
between two tasks [Brys et al., 2015; Song et al., 2016;
Laroche and Barlier, 2017]. However, this way often assumes
a well-estimated model for measurement which causes com-
putational complexity and is infeasible in complex scenarios.
Another direction of policy transfer methods focuses on se-
lecting appropriate source policies based on the performance
of source policies on the target task to provide guided ex-
plorations during each episode [Fernández and Veloso, 2006;
Li and Zhang, 2018; Li et al., 2019]. However, most of these
works are faced with the challenge of how to select a suit-
able source policy, since each source policy may only be par-
tially useful for the target task. Furthermore, some of them
assume source policies to be optimal and deterministic which
restricts the generality. How to directly optimize the target
policy by alternatively utilizing knowledge from appropriate
source policies without explicitly measuring the similarities
is currently missing in previous work.

According to the above analysis, in this paper, we firstly
propose a novel Policy Transfer Framework (PTF) to accel-
erate RL by taking advantage of this idea and combining the
above two directions of policy reuse. Instead of using source
policies as guided explorations in a target task, PTF adap-
tively selects a suitable source policy during target task learn-
ing and uses it as a complementary optimization objective of
the target policy. In this way, PTF does not require any source
policy to be perfect on any subtask and can still learn toward
an optimal policy in case none of the source policy is useful.
Besides, we propose a novel way of adaptively determining
the degree of transferring the knowledge of a source policy to
the target one to avoid negative transfer, which can be effec-
tively used in cases when only part of source policies share
the same state-action space as the target one.

3.2 Framework Overview
Figure 1(a) illustrates the proposed Policy Transfer Frame-
work (PTF) which contains two main components, one (Fig-
ure 1(b)) is the agent module (here is an example of an
actor-critic model), which is used to learn the target policy
with guidance from the option module. The other (Figure
1(c)) is the option module, which is used to learn when and
which source policy is useful for the agent module. Given a
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Algorithm 1 PTF-A3C

1: Initialize: option-value network parameters θo, termina-
tion network parameters θβ , replay buffer D, global pa-
rameters θ and θυ , thread-specific parameters θ′ and θ′υ ,
step t← 1

2: for each thread do
3: Reset gradients: dθ ← 0, dθυ ← 0
4: Assign thread-specific parameters: θ′ = θ, θ′υ = θυ
5: Start from state s, tstart = t
6: Select an option o← ε-greedy(Qo(s, o|θo))
7: repeat
8: Perform an action a ∼ π(s|θ′)
9: Observe reward r and new state s′

10: t← t+ 1
11: Store transition (s, a, r, s′) to replay buffer D
12: Choose another option if o terminates
13: until s is terminal or t− tstart == tmax

14: R =

{
0 if s is terminal
V (s, θ′υ) otherwise

15: for i ∈ {t− 1, · · · , tstart} do
16: R← ri + γR
17: Calculate gradients w.r.t. θ′υ:

dθυ ← dθυ + ∂(R− V (si|θ′υ))2/∂θ′υ
18: Calculate gradients w.r.t. θ′:

dθ ← dθ + ∇θ′ log π(ai|si, θ′)(R − V (si|θ′υ)) +
ρ∇θ′H(π(si|θ′)) + f(βo, t)LH

19: Update(Qo(s, o|θo)) (see Algorithm 2)
20: Update β (s, o|θβ) w.r.t. θβ (Equation 4)
21: end for
22: Asynchronously update θ using dθ and θυ using dθυ
23: end for

set of source policies Πs = {π1, π2, · · · , πn} as the intra-
option policies, the PTF agent first initializes a set of op-
tions O = {o1, o2, · · · , on} together with the option-value
network with random parameters. At each step, it selects an
action following its policy, receives a reward and transitions
to the next state. Meanwhile, it also selects an option oi ac-
cording to the policy over options and the termination prob-
abilities. For the update, the PTF agent introduces a com-
plementary loss, which transfers knowledge from the intra-
option policy πi through imitation, weighted by an adaptive
adjustment factor f(βo, t). The PTF agent will also update
the option-value network and the termination probability of
oi using its own experience simultaneously. The reuse of the
policy πi terminates according to the termination probability
of oi and then another option is selected for reuse following
the policy over options. In this way, PTF efficiently exploits
the useful information from the source policies and avoids
negative transfer through the call-and-return option execution
model. PTF could be easily integrated with both value-based
and policy-based DRL methods.

We describe PTF applying in A3C [Mnih et al., 2016]:
PTF-A3C as an example in detail. The whole learning pro-
cess of PTF-A3C is shown in Algorithm 1. First, PTF-A3C
initializes network parameters for the option-value network,
the termination network (which shares the input and hidden

Algorithm 2 Update(Qo(s, o|θo))
1: Sample a batch of N transitions (s, a, r, s′) from D
2: for o ∈ O do
3: if πo selects action a at state s then
4: Update U(s′, o|θo) (Equation 2)
5: Set y ← r + γU(s′, o|θo)
6: Update option by minimizing the loss:

L← 1
N

∑
i(yi −Qo(si, o|θo))2

7: end if
8: end for
9: Copy θo to the target network Q′o every τ steps

layers with the option-value network and holds a different
output layer), and A3C networks (Line 1). For each episode,
the PTF-A3C agent first selects an option o according to the
policy over options (Line 6); then it selects an action follow-
ing the current policy π(s|θ′), receives a reward r, transits to
the next state s′ and stores the transition to the replay buffer
D (Lines 8-11). Another option will be selected if the option
o is terminated according to the termination probability of o
(Line 12).

For the update, the agent computes the gradient of the tem-
poral difference loss for the critic network (Line 17); and cal-
culates the gradients of the standard actor loss, and also the
extra loss of difference between the source policy πo inside
the option o and the current policy π(θ′), which is measured
by the cross-entropy loss: LH = H(πo ‖ π(θ′)). LH is used
as the supervision signal, weighted by an adaptive adjustment
factor f(βo, t). To ensure sufficient explorations, an entropy
bonus is also considered [Mnih et al., 2016], weighted by a
constant factor ρ (Line 18). Then it updates the option-value
network following Algorithm 2 and the termination network
accordingly (Lines 19, 20) which is described in detail in the
following section.

3.3 Update the Option Module
The remaining issue is how to update the option-value net-
work which is given in Algorithm 2. Since options are tem-
poral abstractions [Sutton et al., 1999; Bacon et al., 2017], U
is introduced as the option-value function upon arrival. The
expected return of executing option o upon entering next state
s′ is U(s′, o|θo), which is correlated to β(s′, o|θβ), i.e., the
probability that option o terminates in next state s′:

U(s′, o|θo)←(1− β(s′, o|θβ))Q′o(s
′, o|θ′o)+

β(s′, o|θβ) max
o′∈O

Q′o(s
′, o′|θ′o). (2)

Then, PTF-A3C samples a batch ofN transitions from the re-
play buffer D and updates the option-value network by min-
imizing the loss (Line 6 in Algorithm 2). Each sample can
be used to update the values of multiple options, as long as
the option allows to select the sampled action (for continuous
action space, this is achieved by fitting action a in the source
policy distribution with a certain confidence interval). Thus
the sample efficiency can be significantly improved in an off-
policy manner.

PTF-A3C learns option-values in the call-and-return option
execution model, where an option o is executed until it termi-
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nates at state s based on its termination probability β(s, o|θβ).
The policy of selecting an option is ε-greedy to the option-
value Qo. Specifically, with a probability of 1− ε, the option
with the highest option-value is selected (random selection in
case of a tie); and random choices are made with probability ε
to explore other options with potentially better performance.

According to the call-and-return option execution model,
the termination probability controls when to terminate the
current selected option and select another option accordingly.
The objective of learning the termination probability is to
maximize the expected return U , so we update the termina-
tion network parameters by computing the gradient of the dis-
counted return objective with respect to the initial condition
(s1, o1) [Bacon et al., 2017]:

∂U(s1, o1|θo)
∂θβ

= −
∑
s′,o

µ(s′, o|s1, o1)
∂β(s′, o|θβ)

∂θβ
A(s′, o|θo),

(3)
where A(s′, o|θo) is the advantage function which can
be approximated as Qo(s′, o|θo) − maxo′∈O Qo(s

′, o′|θo),
and µ(s′, o|s1, o1) is a discounted factor of state-option
pairs from the initial condition (s1, o1): µ(s′, o|s1, o1) =∑∞
t=0 γ

tP (st = s′, ot = o|s1, o1). P (st = s′, ot =
o|s1, o1) is the transition probability along the trajectory start-
ing from the initial condition (s1, o1) to (s′, o) in t steps.
Since µ(s′, o|s1, o1) is estimated from samples along the on-
policy stationary distribution, we neglect it for data efficiency
[Thomas, 2014; Li et al., 2019]. Then β (s, o|θβ) is updated
w.r.t. θβ as follows [Bacon et al., 2017; Li et al., 2019]:

θβ ← θβ − αβ
∂β(s′, o|θβ)

∂θβ
(A(s′, o|θo) + ξ) , (4)

where αβ is the learning rate, ξ is a regularization term. The
advantage term is 0 if the option is the one with the maxi-
mized option value, and negative otherwise. In this way, all
termination probabilities would increase if the option value
is not the maximized one. However, the estimation of the
option-value function is not accurate initially. If we multi-
ply the advantage to the gradient, the termination probability
of an option with the maximize true option value would also
increase, which would lead to a sub-optimal policy over op-
tions. The purpose of ξ is to ensure sufficient exploration that
the best one could be selected.

3.4 Transfer from Selected Source Policy
Next, we describe how to transfer knowledge from the se-
lected source policy. The way to transfer is motivated from
policy distillation [Rusu et al., 2016] which exploits multiple
teacher policies to train a student policy. Namely, a teacher
policy πt is used to generate trajectories x, each containing a
sequence of states (xt)t≥0. The goal is to match student’s
policy πs(θ), parameterized by θ, to πt. The correspond-
ing loss function term for each sequence at each time step
t is: H(πt(a|xt) ‖ πs(a|xt, θ)), where H(· ‖ ·) is the cross-
entropy loss. For value-based algorithms, e.g., DQN, we can
measure the difference of two Q-value distributions using the
Kullback-Leibler (KL) divergence.

Kickstarting [Schmitt et al., 2018] trains a student pol-
icy that surpasses the teacher policy on the same task set by

adding the cross-entropy loss between the teacher and stu-
dent policies to the RL loss. However, it does not consider
learning a new task that is different from the teacher’s task
set. Furthermore, the way using Population Based Training
(PBT) [Jaderberg et al., 2017] to adjust the weighting factor
of the cross-entropy loss increases the computational com-
plexity, lack of adaptive adjustment.

To this end, we propose an adaptive and heuristic way to
adjust the weighting factor f(βo) of the cross-entropy loss.
The option module contains a termination network that re-
flects the performance of options on the target task. If the per-
formance of the current option is not the best among all op-
tions, the termination probability of this option grows, which
indicates we should assign a higher probability to terminate
the current option. Therefore, the termination probability of
a source policy can be used as a performance indicator of ad-
justing its exploitation degree. Specifically, the probability of
exploiting the current source policy πo should be decreased as
the performance of the option o decreases. And the weight-
ing factor f(βo, t) which implies the probability of exploiting
the current source policy πo should be inversely proportional
to the termination probability. Specifically, we propose adap-
tively adjust f(βo, t) as follows:

f(βo, t) = f(t)(1− β(st, o|θβ)), (5)

where f(t) is a discount function. When the value of the
termination function of option o increases, it means that
the performance of the option o is not the best one among
all options based on the current experience. Thus we de-
crease the weighting factor f(βo, t) of the cross-entropy loss
H(πo ‖ π(θ)) and vice versa. f(t) controls the slow decrease
in exploiting the transferred knowledge from source policies
which means at the beginning of learning, we exploit source
knowledge mostly. As learning continues, past knowledge
becomes less useful and we focus more on the current self-
learned policy. In this way, PTF efficiently exploits useful in-
formation and avoids negative transfer from source policies.

4 Experimental Results
In this section, we evaluate PTF on three domains, grid world
[Li et al., 2019], pinball [Bacon et al., 2017] and reacher
[Tassa et al., 2018] compared with several DRL methods
learning from scratch (A3C [Mnih et al., 2016] and PPO
[Schulman et al., 2017]); and the state-of-the-art policy trans-
fer method CAPS [Li et al., 2019], implemented as a deep
version (Deep-CAPS). Results are averaged over 20 random
seeds. We set ξ = 0.005, f(t) = 0.5+tanh(3−0.001∗t)/21.

4.1 Grid World
In a grid world W (see Figure 1 in [Li et al., 2019]), with
an agent starting from any of the grids, and choosing one of
four actions: up, down, left and right. Each action makes
the agent move to the corresponding direction with one step
size. G1, G2, G3 and G4 denote goals of source tasks, g and
g′ represent goals of target tasks. As noted, g is similar to
one of the source tasks G1 since their goals are within a close

1The source code and supplementary materials are put on https:
//github.com/PTF-transfer/Code PTF.
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Figure 2: Average return when learning task g on grid world W .
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Figure 3: Average return when learning task g′ on grid world W .

distance; while g′ is different from each source task due to
the far distance among their goals. The game ends when the
agent approaches the target grid or the time exceeds a fixed
period. The agent receives a reward of +5 after approach-
ing the goal grid. The source policies are trained using A3C
learning from scratch. We also manually design 4 primitive
policies for deep-CAPS following its previous settings (i.e.,
each primitive policy selects the same action for all states),
which is unnecessary for our PTF.

We first investigate the performance of PTF when the tar-
get task g is similar to one of the source tasks, G1 (i.e., the
distance between their goal grids is very close). Figure 2
presents the average return of various methods when learn-
ing task g on grid world W . We can see from Figure 2(a) that
PTF-A3C significantly accelerates the learning process and
outperforms A3C. Similar results can be found in Figure 2(b).
The reason is that PTF quickly identifies the optimal source
policy and exploits useful information from source policies,
which efficiently accelerates the learning process than learn-
ing from scratch. Figure 2(c) shows the performance gap be-
tween PTF-A3C and deep-CAPS. This is because the pol-
icy reuse module and the target task learning module in PTF
are loosely decoupled, apart from reusing knowledge from
source policies, PTF is also able to utilize its own experience
from the environment. However, in deep-CAPS, these two
parts are highly decoupled, which means its explorations and
exploitations are fully dependent on the source policies inside
the options. Thus, deep-CAPS needs higher requirements on
source policies than our PTF, and finally achieves lower per-
formance than PTF-A3C.

Next, we investigate the performance of PTF when all
source tasks are not quite similar to the target task (i.e.,
the distance between their goal grids is very far). Figure
3 presents average return of various methods when learning
task g′. We can see from Figure 3(a), (b) that both PTF-A3C
and PTF-PPO significantly accelerate the learning process
and outperform A3C and PPO. The reason is that PTF iden-
tifies which source policy is optimal to exploit and when to
terminate it, which efficiently accelerates the learning process
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Figure 4: Average return when learning task g′ on grid world W ′.
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Figure 5: Average return when learning g on pinball.

than learning from scratch. The lower performance of deep-
CAPS than PTF-A3C (Figure 3(c)) is due to similar reasons
as described before, that its explorations and exploitations are
fully dependent on source policies, thus needs higher require-
ments on source policies than PTF, and finally achieves lower
performance than PTF-A3C.

To verify that PTF works as well in situations where tran-
sitions between source and target tasks are different, we con-
duct experiments on learning on a grid world W ′ (see Figure
6 in [Li et al., 2019]), whose map is much different from the
map for learning source tasks. Figure 4 shows that PTF still
outperforms other methods even if only some parts of source
policies can be exploited. PTF identifies and exploits useful
parts automatically.

4.2 Pinball
In pinball (see Figure 4 in [Bacon et al., 2017]), a ball is
guided through a maze of arbitrarily shaped polygons to a
designated target location. The state space is continuous over
the position and velocity of the ball in x − y plane. The ac-
tion space is continuous in [−1, 1] range, which controls the
increment of the velocity in the vertical or horizontal direc-
tion. A drag coefficient of 0.995 effectively stops ball move-
ments after a finite number of steps when the null action is
chosen repeatedly. Each thrust action incurs a penalty of −5
while taking no action costs−1. The episode terminates with
a +10000 reward when the agent reaches the target. We in-
terrupt any episode taking more than 500 steps and set the
discount factor to 0.99. These rewards are all normalized to
ensure more stable training. The source policies are trained
using A3C learning from scratch. We also design 5 primitive
policies for deep-CAPS, which is unnecessary for our PTF.

Figure 5 depicts the performance of PTF when learning
task g on Pinball, which is similar to source task G1 (i.e.,
the distance between their goal states is very close). We
can see that PTF significantly accelerates the learning pro-
cess of A3C and PPO (Figure 5(a) and (b)); outperforms
deep-CAPS (Figure 5(c)). The advantage of PTF is similar
with that in grid world: PTF efficiently exploits the useful in-
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Figure 6: Average return when learning g′ on pinball.
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Figure 7: The performance of PTF on Reacher.

formation from source policies to optimize the target policy,
thus achieves higher performance than learning from scratch.
Deep-CAPS achieves lower average return than PTF but out-
performs vanilla A3C and PPO. This indicates it still exploits
useful information from source policies when the target task
is very similar with one of source tasks. However, it fully
depends on source policies for explorations, and a continu-
ous action space is hard to be fully covered even with the
manually added primitive policies. Therefore, deep-CAPS
achieves lower performance than PTF in such a domain.

We further verify whether PTF works well in the same set-
ting as in the grid world that all source tasks are not quite
similar to the target task g′ (i.e., the distance between their
goal states is very far). From Figure 6 we can see that PTF
outperforms other methods even if only some parts of source
policies can be exploited. This is because PTF identifies when
and which source policy is optimal to exploit and when to
terminate it, thus efficiently accelerates the learning process.
However, due to the drawbacks described above, deep-CAPS
fails when the target task is quite dissimilar with source tasks.

4.3 Reacher
To further validate the performance of PTF, we provide an
alternative scenario, Reacher [Tassa et al., 2018], which
is qualitatively different from the above two navigation
tasks. Reacher is one of robot control problems in MuJoCo
[Todorov et al., 2012], equipped with a two-link planar to
reach a target location. The episode ends with the +1 re-
ward when the end effector penetrates the target sphere, or
ends when it takes more than 1000 steps. We design several
tasks in Reacher which are different from the location and
size of the target sphere. Since deep-CAPS performs poorly
in the above continuous domain (pinball), we only compare
PTF with vanilla A3C and PPO in the following sections.

Figure 7(a) shows that PTF-A3C efficiently achieves
higher average return than A3C. Similar results can be found
in PTF-PPO and PPO shown in Figure 7(b). This is because
PTF efficiently exploits the useful knowledge in source tasks,
thus accelerates the learning process compared with vanilla
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Figure 8: Different impacts on the final performance.

methods. These results further show the robustness of PTF.

4.4 Ablation Study
Next, we provide an ablation study to investigate the influ-
ence of the weighting factor f(βo, t) (Equation 5) on the per-
formance of PTF, which is the key factor. Figure 8 shows
the influence of different parts of the weighting factor on
the performance of PTF-A3C. We can see from Figure 8 (a)
when the extra loss is added without the weighting factor
f(βo, t), although it helps the agent at the beginning of learn-
ing compared with A3C learning from scratch, it leads to a
sub-optimal policy because of focusing too much on mimick-
ing the source policies. In contrast, introducing the weighting
factor f(βo, t) allows us to terminate exploiting source poli-
cies in time and thus achieves the best transfer performance.

We further investigate whether PTF can efficiently avoid
negative transfer. Figure 8 (b) shows the average return of
PTF-A3C and deep-CAPS when source policies are not op-
timal towards source tasks. As we described before, deep-
CAPS is fully dependent on source policies for explorations
and exploitations on the target task, when source policies are
not optimal towards source tasks, which means they are not
deterministic at all states. Thus, deep-CAPS cannot avoid
the negative and stochastic impact of source policies, which
confuses the learning of the option-value network and finally
obtains lower performance than PTF-A3C.

5 Conclusion and Future Work
In this paper, we propose a Policy Transfer Framework (PTF)
which can efficiently select the optimal source policy and ex-
ploit the useful information to facilitate the target task learn-
ing. PTF also efficiently avoids negative transfer through ter-
minating the exploitation of current source policy and selects
another one adaptively. PTF can be easily combined with ex-
isting deep DRL methods. Experimental results show PTF ef-
ficiently accelerates the learning process of existing state-of-
the-art DRL methods and outperforms previous policy reuse
approaches. As a future topic, it is worthwhile investigating
how to extend PTF to multiagent settings, and how to learn
abstract knowledge for fast adaptation in new environments.
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